
On Time – For Sure
When a computer takes forever to load a website, it may be annoying, but it is

nothing more serious than that. If, however, the electronics in a car or a plane don’t

process commands exactly when they are supposed to, the consequences can be

fatal. Björn Brandenburg and his team at the Max Planck Institute for Software

Systems in Kaiserslautern and Saarbrücken study how to construct real-time systems

in such a way that it can be proven that they always react on time.

TEXT ALEXANDER STIRN

P
h

o
to

: D
a

im
le

r
A

G

24 MaxPlanckResearch 2 | 14

FOCUS_Our Networked World

 P
unctuality is undervalued – at
least in computer science. If
the airbag in a car is triggered
a few milliseconds too late
because its control unit is pre-

occupied with other tasks, the driver or
other occupants are at risk. If a cell
phone misses the instant in which it
has permission from its cell tower to
communicate, the data connection fails.
If a pilot wants to land a plane but his
commands don’t reach the engines or
landing flaps in time, this can have fa-
tal consequences.

“The physical world doesn’t stop
just because a computer fails to keep
up,” explains Björn Brandenburg, head
of a junior research group at the Max
Planck Institute for Software Systems in

Kaiserslautern and Saarbrücken. The
computer scientist deals with “real-
time systems,” as they are known – ap-
plications for which unpredictable de-
lays aren’t an option.

The theoretical and practical im-
plementation of such systems presents
computer science with major challeng-
es: a program is typically deemed cor-
rect if it produces the correct output
for a given input. “For us, on the other
hand, a system is considered correct
only if it delivers the right output at the
right time,” says Brandenburg.

As head of the research group on re-
al-time systems, the 30-year-old there-

fore studies how such systems can be
guaranteed to operate safely and reli-
ably in an increasingly complex and
networked environment. While exper-
iments and intuition still play an im-
portant role in practice, Brandenburg
relies on hard mathematics: “For safe-
ty-critical applications, we need analy-
sis methods that are mathematically
sound and that accurately prove that a
system always operates as required,”
says the Max Planck researcher.

The demands on real-time systems
are thus fundamentally different than
everyday IT concerns: no mathematical
models are needed to determine wheth-

When fractions of seconds are crucial for survival: The airbag must be inflated before the driver’s
head hits the steering wheel. Its control unit must therefore trigger exactly when it is supposed to.

 2 | 14 MaxPlanckResearch 25

P
h

o
to

: T
h

o
m

a
s

H
a

rt
m

a
n

n

Advocates for punctuality: Björn Brandenburg (right) and Alexander Wieder develop methods to prove that safety-critical
systems perform the job that they are expected to – on time, every time.

es, computer scientists need to look for
a solution step by step, by assuming a
start value and consistently refining it
– a standard procedure that mathema-
ticians refer to as fixed-point iteration.

Another problem is finding realis-
tic minimum and maximum values for
the work involved, the frequency, and
the response time permitted. The for-
mulas can be put through their paces
only if such information is available.
“In practice, a very experienced engi-
neer often performs this task, doing
some testing and then adding in a safe-
ty margin,” says Brandenburg. “In many
cases, that can provide a sufficiently
good estimate.”

MODERN PROCESSORS ARE
LESS PREDICTABLE

In the case of the airbag, the maximum
permitted period of computation is de-
rived from the time that elapses from
the moment the crash happens to the
moment the driver’s head hits the steer-
ing wheel. The airbag must be com-
pletely inflated by then, and this infor-
mation can then be used to deduce how
quickly the software needs to respond.
“Ultimately, the deadline is always de-
rived from the physical demands on
the system,” says Brandenburg.

The engine is no exception. The per-
mitted engine speed dictates the mini-
mum time between two processes. If,
for example, the exhaust gas concentra-
tion needs to be read once every revo-

er the program window with the e-mail
that you just read closes as quickly as
desired. Even if absolutely nothing hap-
pens sometimes, the user might curse,
but the world certainly won’t come to
an end. Developers have to trust their
experience and their ideas when it
comes to improving these types of sys-
tems. They look at the program code
and test the improvements extensively.
“If it usually works, that’s completely
okay for general-purpose systems,” says
Brandenburg.

However, usual or average values
aren’t sufficient in safety-critical real-
time systems such as a car’s airbag. The
product needs to work. Period. “Gener-
ally speaking, systems have now become
so complex that humans can’t reliably
anticipate worst-case behavior using
their intuition alone,” says Brandenburg.

MORE THAN A HUNDRED
MICRO CONTROLLERS IN A CAR

A modern luxury car contains more
than a hundred microcontrollers. These
control each and every system, from
the airbag to the engine control unit to
the radio. Most of these microcontrollers
perform several tasks, which is what
makes the mathematical description so
complicated: “The more components
interact with each other, the more dif-
ficult it is to rule out something going
wrong,” says Björn Brandenburg.

The computer scientist compares
the situation with an office. The em-

ployee working in the office, who in
this scenario represents a processor, is
under pressure. His boss constantly
wants him to do something – those jobs
need to be performed right away. But
his colleagues also have questions and
don’t want to hang around all day wait-
ing for answers to their concerns.

The office works only if all jobs are
executed within the required time-
frame, and if the poor employee
doesn’t put off a mountain of work
when it’s time to leave the office for
the day. Above all, however, the indi-
vidual demands, particularly those of
the boss, mustn’t be left hanging for
so long that the next request already
shows up with the same priority. Oth-
erwise it will all end in chaos. Comput-
er scientists refer to this as non-linear
behavior, which suddenly leads to
jumps in response time.

“To be able to describe such mech-
anisms mathematically, we need mod-
els that represent the world correctly
and that we can also use to prove that
the systems fulfill the requirements
they were designed to fulfill,” says Bran-
denburg. Therefore, in the case of the
office – or a simple real-time system –
computer scientists use mathematical
equations to deal with the frequency of
the individual jobs, the work needed to
process them and the required time-
frame within which a response is need-
ed. The formula system often turns out
to be so complicated that it can no lon-
ger be resolved analytically. In such cas-

26 MaxPlanckResearch 2 | 14

G
ra

p
h

ic
: M

P
I f

o
r

S
o

ft
w

a
re

 S
ys

te
m

s

lution, a maximum engine speed of
6,000 revs per minute (or 100 revs per
second) gives a smallest-possible break
of one hundredth of a second.

It’s considerably more complicated
to determine the actual computing
time of a modern system and thus es-
timate whether the work can also be
done within the specified timeframe.
It was comparatively easy to do this
with previous processor generations.
In those days, engineers could tell from
the machine code how many comput-
ing steps were necessary to execute a
job. As the processor’s operation cycle
was known, it could be used to calcu-
late the time required.

Modern processors are much less
predictable: they predict the control
flow and try to pre-compute the inter-
mediate results that will likely be need-
ed. They can scale their clock frequen-
cy. They employ a hierarchy of caches.
A distinct field of research in computer
science, known as worst-case execution
time analysis, deals solely with this
challenge – determining the maximum
computing time for a specific program
and a specific piece of hardware in a
worst-case scenario.

“It’s incredibly difficult to precisely
bound the worst case,” says Branden-
burg. “That’s why it can be useful to
monitor real systems and extract sam-
ples from them.” For example, a soft-
ware program logs all the commands
that are processed during a test drive in
a car. Engineers can derive data from

this information, such as the maximum
execution time. A small safety buffer is
then built into this to give the output
values for the computerized analysis of
the programs. “The purists in our field
would say that this involves a measure-
ment. It can’t be used to prove with
strict mathematical precision that it re-
ally is the worst-case scenario,” says
Brandenburg. “I take a more pragmatic
view. In any case, an analysis of response
times is better than some spreadsheet
calculation into which a few more or
less arbitrary figures have been typed.”

The final response time calculation
comes into play only after all require-
ments and potential sources of delay
have been factored into the model. “If
we can then show that, even in the
worst-case scenarios, the response time
never exceeds the specified deadline, we
know that it’s okay, the system is safe,”
says Alexander Wieder, a doctoral stu-
dent in Brandenburg’s research group.

ENGINEERS DEFINE THE
REQUIREMENTS

Mathematicians usually prove some-
thing like this using a method they re-
fer to as “proof by contradiction” or
“indirect proof”. The researchers as-
sume that the specified response time
has been exceeded – in other words,
that the event they wanted to rule out
has actually occurred. Then they see
what conclusions they can draw. If the
job wasn’t performed as planned, there

are two options: either it took longer
than expected to process a job, or the
processor must have done something
different while it should have been per-
forming the safety-critical job – so it
must have been busy working on high-
er-priority requests.

The computer scientists then look
more closely at all the processes and
analyze how much work they involve.
The method is gradually refined until,
eventually, there are a few processes
left that, under the given assumptions,
involve more work than the model al-
lows for. A contradiction. “For us, it
means that either our model is wrong,
or something like this is impossible,”
says Brandenburg. The specified re-
sponse time would therefore never be
exceeded. The system is 100 percent
safe – at least under the given model
assumptions.

The models are based on demands
that are defined by engineers. Beyond
these specifications – if the engine runs
at more than 6,000 rpm, for example –
the mathematical proof doesn’t guar-
antee safety. The software may still
function, but it isn’t guaranteed do so.
The engineers therefore need to apply
their expertise to define safe and com-
plete demands on the system.

Further, a type of “volatile boss”,
who assigns several jobs within a short
time and then just retreats into his of-
fice, is frequently simulated. Computer
scientists refer to this phenomenon as
“bursty arrivals”. It is easily expressed

A formula for delay: The Max Planck researchers study real-time systems whose processors share other resources. The systems might perform
a safety-critical job too late because they can’t access a particular resource. The maximum delay is derived from the sum (∑) of all sections of
requests that lead to delays, and the respective length of these requests. The sections of requests may belong to various tasks that originate
from different sources and that rely on several resources. In order to be able to calculate the delay, it is crucial to identify which sections of the
requests XS

x,q,v and XA
x,q,v, lead to the delay. To do this, Björn Brandenburg and his colleagues use a method known as linear optimization.

bi �
∑

Tx∈τ i

∑
�q∈Q

Ni
x,q∑

v=1

(
XS

x,q,v +XA
x,q,v

) · Lx,q

Maximum delay caused by the blocking of necessary materials

All task sources All critical requests

All resources Section of the request that leads to the delay

Length of the request

 2 | 14 MaxPlanckResearch 27

FOCUS_Our Networked World

P
h

o
to

: T
h

o
m

a
s

H
a

rt
m

a
n

n

in algorithms, even if the proof be-
comes more involved as a result.

However, real-time applications re-
ally become complicated when they are
processed on a processor that needs to
share other resources with additional
processors. For example, multiple pro-
cessors may jointly access a message
buffer that stores sensor data until it
can be processed further. Research at
the Max Planck Institute for Software
Systems focuses heavily on systems
with shared resources.

To use the office analogy, where an
employee represents a processor, this
means that the office employees who
normally work undisturbed side by side
now have only one photocopier or one
telephone between them. This inevita-
bly leads to discussions. Some employ-
ees urgently need to finish a job; others
actually have more time to spare, but
don’t want to wait. “Whether all dead-
lines can be met can depend on the se-
quence in which each person takes a
turn,” says Björn Brandenburg.

In practice, computer scientists pur-
sue a variety of approaches: The proces-
sors may use the resource in the order
in which they request access, in order
of priority, or just in a random order de-
termined by the underlying hardware.
When it comes to the question of how
the individual processors should spend
the waiting time, several approaches
can be taken: They can ask incessantly:
“Can I? Can I? Can I?” until it is final-
ly their turn, or they can wait to be in-
vited to use the photocopier.

Theoretically, waiting is the better so-
lution, as the employees can use the
time to tackle other jobs that aren’t
quite as important. In practice, how-
ever, constantly switching from pho-
tocopying to talking on the phone can
entail a considerable amount of addi-
tional work, with nothing really get-
ting done. In critical systems, such as
a car, the method based on “busy-wait-
ing” – that is, the one that involves
constantly asking “Can I?” – is typical-
ly preferred.

Brandenburg and his group aren’t
the first to address this problem. To
date, however, computer scientists
have usually analyzed the shared re-
sources manually: they have considered
possible delays and calculated a maxi-
mum value for the response time based
on their considerations. But with this
method, it takes just one incorrect as-
sumption to arrive at a result that is no
longer certain. Furthermore, the esti-
mates turn out to be incredibly pessi-
mistic. The results are similarly unreal-
istic. “The engineers say: ‘Nice that you
have a safe bound, but in practice, the
response time will never be that high.
It’s useless,’” says Brandenburg.

AN UPPER BOUND FOR
POTENTIAL BLOCKING

The Max Planck researchers have thus
chosen a different approach. First, they
create a complete set of workflows that
are theoretically not impossible in an
office – or a real-time system – and

therefore can’t immediately be ruled
out. Then they gradually identify all
the scenarios that can’t happen in prac-
tice. For example, it’s inconceivable
that an office employee will want to use
all of the equipment simultaneously.

In this way, dozens or even hun-
dreds of constraints are ultimately ac-
cumulated. All of them can be ex-
pressed as linear inequalities. The
number of scenarios that aren’t ruled
out gradually shrinks until an upper
bound on the maximum delay en-
countered by the planned workflows
is found. This bound can then be in-
corporated as another factor in the al-
gorithms that prove the punctuality of
the real-time systems.

The underlying method is known
as “linear optimization,” and has been
explored in mathematics for more
than 60 years. Computer scientists
have since developed a number of fast
analysis systems whose algorithms the
Max Planck researchers can adapt to
real-time systems. Brandenburg says:
“We can now analyze significantly
more complicated systems, and we
have made considerable progress in
terms of accuracy.”

All of this is particularly important
in practice because many real-time sys-
tems now use multi-core processors.
With these, the processing tasks are
shared among two or more indepen-
dent central processing units, or cores.
The cores access shared resources and
perform their individual tasks in paral-
lel. “Multi-core processors represent a

left: Interpreting between two vernaculars: Björn Brandenburg
understands both the engineers who develop the real-time
systems and the theorists who want to prove their reliability.
That is why he wants to liaise between the two disciplines.

right page: In order for a plane to be able to land safely, the
electronics must communicate the pilot’s control commands
to the engines or landing flaps within a specified timeframe.

28 MaxPlanckResearch 2 | 14

P
h

o
to

: i
st

o
ck

p
h

o
to

 /
 Ja

ro
m

ír
 C

h
a

la
b

a
la

huge challenge for real-time systems,”
says Björn Brandenburg.

Computer science is lagging behind
here. For a long time, in the context of
real-time systems, multi-core processors
were considered to be primarily of the-
oretical interest, and not to be installed
in time-critical applications. Now, the
requirements even in cars are so high
that multi-core processors have become
almost standard. The proven algorithms
no longer work here; everything needs
to be developed from scratch. “The ar-
gument previously used, that if a pro-
cessor focuses on one job, then other,
potentially disruptive activities can’t
take place at the same time, is an in-
credibly powerful element in the rea-
soning,” says Brandenburg. “That no
longer works in multi-core systems – I
never know what the other cores are
doing at any given time.”

In particular, the maximum execu-
tion time, which is very hard to deter-
mine even on modern single-core pro-
cessors, presents computer scientists
with major challenges. The question of
determining exact response times, and
not just safe upper bounds, remains
open. What it looks like, how it can be
described in formulas and how the
analysis can be improved as a result, re-
mains unresolved.

Still another – considerably more
human – problem is troubling the Max
Planck researchers. Many theorists who
puzzle over analysis algorithms for
multi-core processors are math experts,
but rarely do they sit in a lab and write

GLOSSARY

Real-time system: A system, such as an electronic control unit or a microcomputer, that
needs to handle a process within a specified timeframe. Real-time systems are used in
safety-critical tasks, such as controlling an airbag.

Linear optimization: Techniques for finding an optimal solution to a problem that can
be described by a linear equation subject to a set of constraints that are represented as
linear inequalities.

Proof by contradiction: Indirect proof that proves a proposition by refuting its opposite.
The proposition to be refuted is reduced to such an extent that a contradiction emerges
as a substantiated proposition.

TO THE POINT
● When it comes to the safety of cars or planes, the electronics must process data

with absolute reliability within a specified timeframe. Experiments can’t prove with
absolute certainty whether such real-time systems actually perform their jobs on
time. Mathematical proof is necessary.

● Modern electronic processors have several CPU cores, process several tasks simulta-
neously and vary their clock frequency. This makes the mathematical description of
such systems, and the proof that they function correctly, very complicated.

● In some ways, Max Planck researchers are breaking the mold in their reasoning,
for example by leveraging linear optimization. This allows them to analyze more
complicated systems with greater accuracy than before.

programs. Engineers in industry, on the
other hand, are highly specialized and
can use the tricks of their trade to oper-
ate even the most obscure systems. But
they aren’t necessarily the best mathe-
maticians.

Instead, they try to squeeze their
experience into several thousand pag-
es of comprehensive rules, which – as
in automotive engineering, for in-
stance – specify in detail the demands

made on every system. This, in turn,
doesn’t please the theorists, who pre-
fer specifications to be as simple as
possible. “Part of my research work
consists in sitting in the middle and
saying: I understand the mathemati-
cians, I understand the practitioners,
I’ll try to interpret between the two
sides,” says Brandenburg. This is a
timely approach, particularly in the
area of real-time systems.

 2 | 14 MaxPlanckResearch 29

FOCUS_Our Networked World

