
On Time – For Sure
When a computer takes forever to load a website, it may be annoying, but it is 

nothing more serious than that. If, however, the electronics in a car or a plane don’t 

process commands exactly when they are supposed to, the consequences can be 

fatal. Björn Brandenburg and his team at the Max Planck Institute for Software 

Systems in Kaiserslautern and Saarbrücken study how to construct real-time systems 

in such a way that it can be proven that they always react on time.
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unctuality is undervalued – at 
least in computer science. If 
the airbag in a car is triggered 
a few milliseconds too late 
because its control unit is pre-

occupied with other tasks, the driver or 
other occupants are at risk. If a cell 
phone misses the instant in which it 
has permission from its cell tower to 
communicate, the data connection fails. 
If a pilot wants to land a plane but his 
commands don’t reach the engines or 
landing flaps in time, this can have fa-
tal consequences.

“The physical world doesn’t stop 
just because a computer fails to keep 
up,” explains Björn Brandenburg, head 
of a junior research group at the Max 
Planck Institute for Software Systems in 

Kaiserslautern and Saarbrücken. The 
computer scientist deals with “real-
time systems,” as they are known – ap-
plications for which unpredictable de-
lays aren’t an option.

The theoretical and practical im-
plementation of such systems presents 
computer science with major challeng-
es: a program is typically deemed cor-
rect if it produces the correct output 
for a given input. “For us, on the other 
hand, a system is considered correct 
only if it delivers the right output at the 
right time,” says Brandenburg. 

As head of the research group on re-
al-time systems, the 30-year-old there-

fore studies how such systems can be 
guaranteed to operate safely and reli-
ably in an increasingly complex and 
networked environment. While exper-
iments and intuition still play an im-
portant role in practice, Brandenburg 
relies on hard mathematics: “For safe-
ty-critical applications, we need analy-
sis methods that are mathematically 
sound and that accurately prove that a 
system always operates as required,” 
says the Max Planck researcher.

The demands on real-time systems 
are thus fundamentally different than 
everyday IT concerns: no mathematical 
models are needed to determine wheth-

When fractions of seconds are crucial for survival: The airbag must be inflated before the driver’s 
head hits the steering wheel. Its control unit must therefore trigger exactly when it is supposed to.

  2 | 14  MaxPlanckResearch    25



P
h

o
to

: T
h

o
m

a
s 

H
a

rt
m

a
n

n

Advocates for punctuality: Björn Brandenburg (right) and Alexander Wieder develop methods to prove that safety-critical 
systems perform the job that they are expected to – on time, every time.  

es, computer scientists need to look for 
a solution step by step, by assuming a 
start value and consistently refining it 
– a standard procedure that mathema-
ticians refer to as fixed-point iteration.

Another problem is finding realis-
tic minimum and maximum values for 
the work involved, the frequency, and 
the response time permitted. The for-
mulas can be put through their paces 
only if such information is available. 
“In practice, a very experienced engi-
neer often performs this task, doing 
some testing and then adding in a safe-
ty margin,” says Brandenburg. “In many 
cases, that can provide a sufficiently 
good estimate.”

MODERN PROCESSORS ARE 
LESS PREDICTABLE 

In the case of the airbag, the maximum 
permitted period of computation is de-
rived from the time that elapses from 
the moment the crash happens to the 
moment the driver’s head hits the steer-
ing wheel. The airbag must be com-
pletely inflated by then, and this infor-
mation can then be used to deduce how 
quickly the software needs to respond. 
“Ultimately, the deadline is always de-
rived from the physical demands on 
the system,” says Brandenburg.

The engine is no exception. The per-
mitted engine speed dictates the mini-
mum time between two processes. If, 
for example, the exhaust gas concentra-
tion needs to be read once every revo-

er the program window with the e-mail 
that you just read closes as quickly as 
desired. Even if absolutely nothing hap-
pens sometimes, the user might curse, 
but the world certainly won’t come to 
an end. Developers have to trust their 
experience and their ideas when it 
comes to improving these types of sys-
tems. They look at the program code 
and test the improvements extensively. 
“If it usually works, that’s completely 
okay for general-purpose systems,” says 
Brandenburg.

However, usual or average values 
aren’t sufficient in safety-critical real-
time systems such as a car’s airbag. The 
product needs to work. Period. “Gener-
ally speaking, systems have now become 
so complex that humans can’t reliably 
anticipate worst-case behavior using 
their intuition alone,” says Brandenburg.

MORE THAN A HUNDRED 
MICRO CONTROLLERS IN A CAR 

A modern luxury car contains more 
than a hundred microcontrollers. These 
control each and every system, from 
the airbag to the engine control unit to 
the radio. Most of these microcontrollers 
perform several tasks, which is what 
makes the mathematical description so 
complicated: “The more components 
interact with each other, the more dif-
ficult it is to rule out something going 
wrong,” says Björn Brandenburg.

The computer scientist compares 
the situation with an office. The em-

ployee working in the office, who in 
this scenario represents a processor, is 
under pressure. His boss constantly 
wants him to do something – those jobs 
need to be performed right away. But 
his colleagues also have questions and 
don’t want to hang around all day wait-
ing for answers to their concerns. 

The office works only if all jobs are 
executed within the required time-
frame, and if the poor employee 
doesn’t put off a mountain of work 
when it’s time to leave the office for 
the day. Above all, however, the indi-
vidual demands, particularly those of 
the boss, mustn’t be left hanging for 
so long that the next request already 
shows up with the same priority. Oth-
erwise it will all end in chaos. Comput-
er scientists refer to this as non-linear 
behavior, which suddenly leads to 
jumps in response time.

“To be able to describe such mech-
anisms mathematically, we need mod-
els that represent the world correctly 
and that we can also use to prove that 
the systems fulfill the requirements 
they were designed to fulfill,” says Bran-
denburg. Therefore, in the case of the 
office – or a simple real-time system – 
computer scientists use mathematical 
equations to deal with the frequency of 
the individual jobs, the work needed to 
process them and the required time-
frame within which a response is need-
ed. The formula system often turns out 
to be so complicated that it can no lon-
ger be resolved analytically. In such cas-
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lution, a maximum engine speed of 
6,000 revs per minute (or 100 revs per 
second) gives a smallest-possible break 
of one hundredth of a second.

It’s considerably more complicated 
to determine the actual computing 
time of a modern system and thus es-
timate whether the work can also be 
done within the specified timeframe. 
It was comparatively easy to do this 
with previous processor generations. 
In those days, engineers could tell from 
the machine code how many comput-
ing steps were necessary to execute a 
job. As the processor’s operation cycle 
was known, it could be used to calcu-
late the time required.

Modern processors are much less 
predictable: they predict the control 
flow and try to pre-compute the inter-
mediate results that will likely be need-
ed. They can scale their clock frequen-
cy. They employ a hierarchy of caches. 
A distinct field of research in computer 
science, known as worst-case execution 
time analysis, deals solely with this 
challenge – determining the maximum 
computing time for a specific program 
and a specific piece of hardware in a 
worst-case scenario. 

“It’s incredibly difficult to precisely 
bound the worst case,” says Branden-
burg. “That’s why it can be useful to 
monitor real systems and extract sam-
ples from them.” For example, a soft-
ware program logs all the commands 
that are processed during a test drive in 
a car. Engineers can derive data from 

this information, such as the maximum 
execution time. A small safety buffer is 
then built into this to give the output 
values for the computerized analysis of 
the programs. “The purists in our field 
would say that this involves a measure-
ment. It can’t be used to prove with 
strict mathematical precision that it re-
ally is the worst-case scenario,” says 
Brandenburg. “I take a more pragmatic 
view. In any case, an analysis of response 
times is better than some spreadsheet 
calculation into which a few more or 
less arbitrary figures have been typed.”

The final response time calculation 
comes into play only after all require-
ments and potential sources of delay 
have been factored into the model. “If 
we can then show that, even in the 
worst-case scenarios, the response time 
never exceeds the specified deadline, we 
know that it’s okay, the system is safe,” 
says Alexander Wieder, a doctoral stu-
dent in Brandenburg’s research group.

ENGINEERS DEFINE THE 
REQUIREMENTS 

Mathematicians usually prove some-
thing like this using a method they re-
fer to as “proof by contradiction” or 
“indirect proof”. The researchers as-
sume that the specified response time 
has been exceeded – in other words, 
that the event they wanted to rule out 
has actually occurred. Then they see 
what conclusions they can draw. If the 
job wasn’t performed as planned, there 

are two options: either it took longer 
than expected to process a job, or the 
processor must have done something 
different while it should have been per-
forming the safety-critical job – so it 
must have been busy working on high-
er-priority requests.

The computer scientists then look 
more closely at all the processes and 
analyze how much work they involve. 
The method is gradually refined until, 
eventually, there are a few processes 
left that, under the given assumptions, 
involve more work than the model al-
lows for. A contradiction. “For us, it 
means that either our model is wrong, 
or something like this is impossible,” 
says Brandenburg. The specified re-
sponse time would therefore never be 
exceeded. The system is 100 percent 
safe – at least under the given model 
assumptions.

The models are based on demands 
that are defined by engineers. Beyond 
these specifications – if the engine runs 
at more than 6,000 rpm, for example – 
the mathematical proof doesn’t guar-
antee safety. The software may still 
function, but it isn’t guaranteed do so. 
The engineers therefore need to apply 
their expertise to define safe and com-
plete demands on the system.

Further, a type of “volatile boss”, 
who assigns several jobs within a short 
time and then just retreats into his of-
fice, is frequently simulated. Computer 
scientists refer to this phenomenon as 
“bursty arrivals”. It is easily expressed 

A formula for delay: The Max Planck researchers study real-time systems whose processors share other resources. The systems might perform 
a safety-critical job too late because they can’t access a particular resource. The maximum delay is derived from the sum (∑) of all sections of 
requests that lead to delays, and the respective length of these requests. The sections of requests may belong to various tasks that originate 
from different sources and that rely on several resources. In order to be able to calculate the delay, it is crucial to identify which sections of the 
requests XS

x,q,v and XA
x,q,v, lead to the delay. To do this, Björn Brandenburg and his colleagues use a method known as linear optimization. 
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Maximum delay caused by the blocking of necessary materials

All task sources All critical requests

All resources Section of the request that leads to the delay

Length of the request
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in algorithms, even if the proof be-
comes more involved as a result.

However, real-time applications re-
ally become complicated when they are 
processed on a processor that needs to 
share other resources with additional 
processors. For example, multiple pro-
cessors may jointly access a message 
buffer that stores sensor data until it 
can be processed further. Research at 
the Max Planck Institute for Software 
Systems focuses heavily on systems 
with shared resources. 

To use the office analogy, where an 
employee represents a processor, this 
means that the office employees who 
normally work undisturbed side by side 
now have only one photocopier or one 
telephone between them. This inevita-
bly leads to discussions. Some employ-
ees urgently need to finish a job; others 
actually have more time to spare, but 
don’t want to wait. “Whether all dead-
lines can be met can depend on the se-
quence in which each person takes a 
turn,” says Björn Brandenburg.

In practice, computer scientists pur-
sue a variety of approaches: The proces-
sors may use the resource in the order 
in which they request access, in order 
of priority, or just in a random order de-
termined by the underlying hardware. 
When it comes to the question of how 
the individual processors should spend 
the waiting time, several approaches 
can be taken: They can ask incessantly: 
“Can I? Can I? Can I?” until it is final-
ly their turn, or they can wait to be in-
vited to use the photocopier. 

Theoretically, waiting is the better so-
lution, as the employees can use the 
time to tackle other jobs that aren’t 
quite as important. In practice, how-
ever, constantly switching from pho-
tocopying to talking on the phone can 
entail a considerable amount of addi-
tional work, with nothing really get-
ting done. In critical systems, such as 
a car, the method based on “busy-wait-
ing” – that is, the one that involves 
constantly asking “Can I?” – is typical-
ly preferred.

Brandenburg and his group aren’t 
the first to address this problem. To 
date, however, computer scientists 
have usually analyzed the shared re-
sources manually: they have considered 
possible delays and calculated a maxi-
mum value for the response time based 
on their considerations. But with this 
method, it takes just one incorrect as-
sumption to arrive at a result that is no 
longer certain. Furthermore, the esti-
mates turn out to be incredibly pessi-
mistic. The results are similarly unreal-
istic. “The engineers say: ‘Nice that you 
have a safe bound, but in practice, the 
response time will never be that high. 
It’s useless,’” says Brandenburg.

AN UPPER BOUND FOR 
POTENTIAL BLOCKING 

The Max Planck researchers have thus 
chosen a different approach. First, they 
create a complete set of workflows that 
are theoretically not impossible in an 
office – or a real-time system – and 

therefore can’t immediately be ruled 
out. Then they gradually identify all 
the scenarios that can’t happen in prac-
tice. For example, it’s inconceivable 
that an office employee will want to use 
all of the equipment simultaneously.

In this way, dozens or even hun-
dreds of constraints are ultimately ac-
cumulated. All of them can be ex-
pressed as linear inequalities. The 
number of scenarios that aren’t ruled 
out gradually shrinks until an upper 
bound on the maximum delay en-
countered by the planned workflows 
is found. This bound can then be in-
corporated as another factor in the al-
gorithms that prove the punctuality of 
the real-time systems.

The underlying method is known 
as “linear optimization,” and has been 
explored in mathematics for more 
than 60 years. Computer scientists 
have since developed a number of fast 
analysis systems whose algorithms the 
Max Planck researchers can adapt to 
real-time systems. Brandenburg says: 
“We can now analyze significantly 
more complicated systems, and we 
have made considerable progress in 
terms of accuracy.”

All of this is particularly important 
in practice because many real-time sys-
tems now use multi-core processors. 
With these, the processing tasks are 
shared among two or more indepen-
dent central processing units, or cores. 
The cores access shared resources and 
perform their individual tasks in paral-
lel. “Multi-core processors represent a 

left: Interpreting between two vernaculars: Björn Brandenburg 
understands both the engineers who develop the real-time 
systems and the theorists who want to prove their reliability. 
That is why he wants to liaise between the two disciplines.

right page: In order for a plane to be able to land safely, the 
electronics must communicate the pilot’s control commands 
to the engines or landing flaps within a specified timeframe.
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huge challenge for real-time systems,” 
says Björn Brandenburg.

Computer science is lagging behind 
here. For a long time, in the context of 
real-time systems, multi-core processors 
were considered to be primarily of the-
oretical interest, and not to be installed 
in time-critical applications. Now, the 
requirements even in cars are so high 
that multi-core processors have become 
almost standard. The proven algorithms 
no longer work here; everything needs 
to be developed from scratch. “The ar-
gument previously used, that if a pro-
cessor focuses on one job, then other, 
potentially disruptive activities can’t 
take place at the same time, is an in-
credibly powerful element in the rea-
soning,” says Brandenburg. “That no 
longer works in multi-core systems – I 
never know what the other cores are 
doing at any given time.” 

In particular, the maximum execu-
tion time, which is very hard to deter-
mine even on modern single-core pro-
cessors, presents computer scientists 
with major challenges. The question of 
determining exact response times, and 
not just safe upper bounds, remains 
open. What it looks like, how it can be 
described in formulas and how the 
analysis can be improved as a result, re-
mains unresolved.

Still another – considerably more 
human – problem is troubling the Max 
Planck researchers. Many theorists who 
puzzle over analysis algorithms for 
multi-core processors are math experts, 
but rarely do they sit in a lab and write 

 

GLOSSARY

Real-time system: A system, such as an electronic control unit or a microcomputer, that 
needs to handle a process within a specified timeframe. Real-time systems are used in 
safety-critical tasks, such as controlling an airbag.

Linear optimization: Techniques for finding an optimal solution to a problem that can 
be described by a linear equation subject to a set of constraints that are represented as 
linear inequalities. 

Proof by contradiction: Indirect proof that proves a proposition by refuting its opposite. 
The proposition to be refuted is reduced to such an extent that a contradiction emerges 
as a substantiated proposition. 

TO THE POINT
●   When it comes to the safety of cars or planes, the electronics must process data 

with absolute reliability within a specified timeframe. Experiments can’t prove with 
absolute certainty whether such real-time systems actually perform their jobs on 
time. Mathematical proof is necessary.

●   Modern electronic processors have several CPU cores, process several tasks simulta-
neously and vary their clock frequency. This makes the mathematical description of 
such systems, and the proof that they function correctly, very complicated.

●   In some ways, Max Planck researchers are breaking the mold in their reasoning, 
for example by leveraging linear optimization. This allows them to analyze more 
complicated systems with greater accuracy than before.

programs. Engineers in industry, on the 
other hand, are highly specialized and 
can use the tricks of their trade to oper-
ate even the most obscure systems. But 
they aren’t necessarily the best mathe-
maticians.

Instead, they try to squeeze their 
experience into several thousand pag-
es of comprehensive rules, which – as 
in automotive engineering, for in-
stance – specify in detail the demands 

made on every system. This, in turn, 
doesn’t please the theorists, who pre-
fer specifications to be as simple as 
possible. “Part of my research work 
consists in sitting in the middle and 
saying: I understand the mathemati-
cians, I understand the practitioners, 
I’ll try to interpret between the two 
sides,” says Brandenburg. This is a 
timely approach, particularly in the 
area of real-time systems.    
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